
Self-avoiding polygons and walks in slits

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 185004

(http://iopscience.iop.org/1751-8121/41/18/185004)

Download details:

IP Address: 171.66.16.148

The article was downloaded on 03/06/2010 at 06:47

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/18
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 185004 (21pp) doi:10.1088/1751-8113/41/18/185004

Self-avoiding polygons and walks in slits

J Alvarez1,2, E J Janse van Rensburg2, C E Soteros3 and S G Whittington1

1 Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
2 Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
3 Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK S7N
5E6, Canada

E-mail: jalvarez@chem.utoronto.ca, rensburg@yorku.ca, soteros@math.usask.ca and
swhittin@chem.utoronto.ca

Received 12 February 2008, in final form 27 March 2008
Published 18 April 2008
Online at stacks.iop.org/JPhysA/41/185004

Abstract
A polymer in a confined geometry may be modeled by a self-avoiding walk or a
self-avoiding polygon confined between two parallel walls. In two dimensions,
this model involves self-avoiding walks or self-avoiding polygons in the square
lattice between two parallel confining lines. Interactions of the polymer with
the confining walls are introduced by energy terms associated with edges in the
walk or polygon which are at or near the confining lines. We use transfer-matrix
methods to investigate the forces between the walk or polygon and the confining
lines, as well as to investigate the effects of the confining slit’s width and of
the energy terms on the thermodynamic properties of the walks or polygons in
several models. The phase diagram found for the self-avoiding walk models
is qualitatively similar to the phase diagram of a directed walk model confined
between two parallel lines, as was previously conjectured. However, the phase
diagram of one of our polygon models is found to be significantly different and
we present numerical data to support this. For that particular model we prove
that, for any finite values of the energy terms, there are an infinite number of slit
widths where a polygon will induce a steric repulsion between the confining
lines.

PACS numbers: 05.50.+q, 82.35.Lr, 82.35.Gh, 61.25.Hq

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Models of polymers confined between two parallel walls have been studied partly because of
an interest in the effect of geometrical constraints on the configurational and thermodynamic
properties of polymers and partly as models of steric stabilization and sensitized flocculation
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[1]. When a polymer is confined between two parallel walls the polymer loses configurational
entropy and this results in a repulsive force being exerted by the polymer on the confining
walls. When the polymer adsorbs on the two attractive confining walls the resulting attractive
force can dominate the entropic repulsion.

In a classic paper DiMarzio and Rubin [2] investigated a random walk model of a polymer
between two parallel walls in the cubic lattice. Interactions between the walk and the wall,
besides the geometric constraints, were modeled through energy terms in the Boltzmann
weights of the walks. If the energy terms are not present then the confined walk loses entropy
and the force exerted by the walk on the walls is always repulsive. If the walk is attracted
to only one of the two walls the force remains repulsive. However, if the walk is attracted
(equally) to both walls then the force is repulsive for weak attractive interactions but the force
is attractive for stronger attractive interactions—see for example [1, 3–5] for more remarks
and results.

In 2005, Brak et al [6] considered a two-dimensional directed walk version of this model.
They considered a Dyck path confined between the two lines y = 0 and y = w, where vertices
of the Dyck path are given a Boltzmann weight a if they are in the line y = 0 and a weight b if
they are in the line y = w. For an infinite Dyck path (that is, a Dyck path with n edges where
n → ∞) they investigated the behavior at large but finite w as a function of a and b. In this
model they showed that there is a zero-force curve (ab = a + b) separating the region where
the force is repulsive from where it is attractive. In the attractive regime the force is always
short-ranged but in the repulsive regime there are regions where the force is long-ranged and
regions where it is short-ranged. The behavior when n and w are both finite has recently been
investigated by Owczarek et al [7]. The results for Dyck paths (in the infinite n limit) were
extended to Motzkin paths by Brak et al [8], and the phase diagram is qualitatively similar to
that found for Dyck paths.

Self-avoiding walks confined between two parallel walls with Boltzmann weights
a = b = 1 have also been considered. Wall et al [9] studied the mean square end-to-
end separation of self-avoiding walks on the square lattice between two parallel lines and
obtained exact results for a slit of width w = 1 as well as asymptotic results for a slit of width
w = 2. Wall and coworkers [10, 11] used Monte Carlo methods to study the problem and
calculated the exponential growth rate of self-avoiding walks on the square lattice between
two parallel lines for small w. These calculations were extended by Klein [12] and by Alm
and Janson [13]. Hammersley and Whittington [14] showed that the force was repulsive for
all values of w.

More recently, Janse van Rensburg et al [4] generalized the results of Hammersley and
Whittington to include interactions with the confining planes besides the geometric constraints
and showed that the force is repulsive in certain regions of the (a, b)-plane. Although there are
numerical results which suggest that the phase diagram for self-avoiding walks is qualitatively
similar to that of directed walks (such as Dyck and Motzkin paths) there are no rigorous results
establishing the existence of an attractive force for some values of a and b.

In this paper we consider both self-avoiding walks and self-avoiding polygons on the
square lattice confined between the two lines y = 0 (bottom wall) and y = w (top wall).

Let �v be the non-negative integer vector (v0, v0,1, v1, vw−1, vw−1,w, vw) and let cn(�v,w)

be the number of self-avoiding walks in a slit of width w with n edges, having v0 horizontal
edges at y = 0 (the bottom wall), v1 horizontal edges at y = 1 (immediately above the
bottom wall), v0,1 vertical edges between y = 0 and y = 1 (to/from the bottom wall), vw

horizontal edges at y = w (the top wall), vw−1 horizontal edges at y = w − 1 (immediately
below the top wall), and vw−1,w vertical edges between y = w − 1 and y = w (to/from the
top wall).
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One can define the partition function as

Zn(�a, �b,w) =
∑

�v
cn(�v,w)a

v0
0 a

v0,1

0,1 a
v1
1 b

vw−1
t−1 b

vw−1,w

t−1,t bvw

t , (1)

where �a is the positive real vector of Boltzmann factors (a0, a0,1, a1) and �b is the positive real
vector of Boltzmann factors (bt−1, bt−1,t , bt ). We shall refer to the Boltzmann factors as wall
interaction parameters. The grand canonical partition function is given by

H(�a, �b,w, z) =
∞∑

n=0

Zn(�a, �b,w)zn (2)

whose radius of convergence, zc(H(�a, �b,w, z)), is positive and finite. The radius of
convergence is positive because all terms in the grand canonical partition function are positive,
and it will be shown to be finite in section 3.

The free energy is defined in terms of the partition function (1) as

κ(�a, �b,w) = lim
n→∞ n−1 log Zn(�a, �b,w), (3)

where the existence of the limit follows mutatis mutandis from [4]. The free energy may also
be obtained from the radius of convergence zc(H(�a, �b,w, z)) as:

κ(�a, �b,w) = − log(zc(H(�a, �b,w, z))). (4)

The force exerted by the walk (or the polygon) on the confining lines is defined as

f (�a, �b,w) := ∂

∂w
κ(�a, �b,w) ≈ κ(�a, �b,w + 1) − κ(�a, �b,w), (5)

where we approximate the derivative by a difference relation because in this paper we obtain
the free energy κ(�a, �b,w) only for integer width values w. If the free energy increases as the
width w increases, then the force is positive and hence it is a repulsive force. On the other
hand, if the free energy decreases as the width w increases, then the force is negative and
hence it is an attractive force.

We consider four special cases of the partition function (1):

(1) a0,1 = a1 = bt−1 = bt−1,t = 1, which we shall refer to as the model with single layers at
both walls (section 4.1),

(2) a0,1 = a1 = bt−1,t = 1 and bt−1 = bt = b, which we shall refer to as the model with a
double layer at the top wall (section 4.2),

(3) a0,1 = bt−1,t = 1, a0 = a1 = a and bt−1 = bt = b, which we shall refer to as the model
with double layers at both walls (section 4.3),

(4) a0 = a0,1 = a1 = a and bt−1 = bt−1,t = bt = b, which we shall refer to as the model
with fully interacting double layers (section 4.4).

We are interested in the behavior of the walk (or the polygon) as a function of the wall
interaction parameters �a and �b and of the width w. In particular, are there both attractive
and repulsive regimes in the phase diagram, and if so, how are they arranged? The phase
diagram for directed walk models was investigated in the large-w regime [6, 8] and several
different force regimes were identified: a long-ranged and repulsive regime, a short-ranged
and attractive regime, and a short-ranged and repulsive regime.

In this paper we examine the phase diagram of the four models described above
by transfer-matrix methods (for a discussion of transfer matrices, see for example [15,
section 4.7]). Our implementation will follow the methods discussed in [3, 12]. In section 2
we describe a representation of self-avoiding walks and self-avoiding polygons as sequences
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of column states, as described in [12]. The application of the transfer-matrix method to our
models is discussed in section 3 for both self-avoiding walks and self-avoiding polygons.

In section 4 we present our numerical results. In the model with single layers at both
walls we find qualitatively different behavior for the walk and the polygon models. In the
walk model we find both repulsive and attractive regimes in the ab-plane separated by a
zero-force curve. This zero-force curve is asymptotic to the lines a = 1 and b = 1 in this
model. In the polygon model there is no evidence of an attractive phase, presumably because
the polygon screens itself in a two-dimensional slit. We prove that for infinitely many values
of the slit width w, there is no attractive regime in the polygon model with single layers at
both walls. However, we have not ruled out the existence of attractive forces for some values
of w.

The other models have not been previously considered. Our results show the presence of
an attractive regime in all these models, in contrast to the polygon model with single layers at
both walls. We conclude the paper with final remarks in section 5.

2. Column state representation

Klein [12] described how to represent a two-dimensional unfolded self-avoiding walk in a slit as
a sequence of column states, as will be described in section 2.1. This representation is similarly
applicable to two-dimensional self-avoiding polygons in a slit, as discussed in section 2.2.
This column state representation allows the application of transfer-matrix methods to study
the behavior of the walk or the polygon, as will be discussed in section 3.

2.1. Self-avoiding walks

The discussion here is limited to unfolded walks in the square lattice. An unfolded walk
ω = {ω0, ω1, . . . , ωn} of length n and with vertices ωi with coordinates (x(ωi), y(ωi)) satisfies
the constraint x(ω0) < x(ωi) < x(ωn) for i = 1, 2, . . . , n. In other words, the first vertex
is strictly ‘left-most’ (has least x-coordinate), and the last vertex is strictly ‘right-most’ (has
maximal x-coordinate). Unfolded walks were introduced in [16] and it can be proven using
the methods of [4] that unfolded walks with the partition function given by (1) have the same
limiting free energy as all walks.

Following Klein [12], an unfolded two-dimensional self-avoiding walk in a slit of width
w may be considered as a sequence of column states, where the ith column state corresponds
to the ith column of horizontal edges combined with a specification of how these edges
are connected through previous column states. This allows walks to be constructed from
a sequence of column states while tracking the connectivity and self-avoidance of the walk
as the states are appended on the right. For example, consider a slit of width w = 1, then
there are only two possible column states, S1 and S2, for unfolded self-avoiding walks, as
depicted in figure 1(a). Figure 1(b) depicts an example of the column state representation
for a particular self-avoiding walk of length n = 11 consisting of the sequence of 8 column
states (S1, S1, S2, S2, S2, S2, S1, S2). In the slit of width w = 1, one can go from any column
state to any other column state, with the possible addition of a vertical edge to connect the
horizontal edges in adjacent column states (e.g., to connect the second and third columns of
the self-avoiding walk in figure 1).

Figure 2(a) shows the five possible column states, S1, . . . , S5, for unfolded self-avoiding
walks in a slit of width w = 2. The rounded vertical edges in the column states S4 and S5

specify how the corresponding horizontal edges must be connected through previous column
states. In particular, if a walk is generated from a sequence of column states, then there is
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(a) (b)

Figure 1. (a) Possible column states, S1 and S2, for unfolded self-avoiding walks in a slit of width
w = 1. (b) An example of the column state representation of a self-avoiding walk of length n = 11
consisting of the sequence of 8 column states (S1, S1, S2, S2, S2, S2, S1, S2).

(a) (b)

Figure 2. (a) Possible column states, S1, . . . , S5, for unfolded self-avoiding walks in a slit of
width w = 2. (b) An example of the column state representation of a self-avoiding walk of length
n = 34 consisting of 13 columns. This self-avoiding walk can be represented as the sequence of
column states (S1, S4, S3, S5, S5, S1, S2, S3, S1, S3, S5, S1, S2).

a set of matching rules which gives, for each column state, the possible states to which it
may be appended on the right by the addition of vertical edges. For example, one may not
append column states S5 to S1 on the right because there is no possible selection of vertical
edges which would give a consistent self-avoiding matching of these two states. Figure 2(b)
depicts an example of the column state representation of a particular self-avoiding walk of
length n = 34 consisting of the sequence of 13 column states (S1, S4, S3, S5, S5, S1, S2, S3, S1,

S3, S5, S1, S2).
In order to calculate the number of possible column states for unfolded self-avoiding walks

in a slit of width w, one has to take into account the number and location of the horizontal
edges in the column state as well as the specification for how they are connected to one another
by previous column states. First note that each column state must have an odd number of
horizontal edges. So, for a slit of width w, one can have column states with 1, 3, . . . , 2�w/2�+1
horizontal edges. Then, one may have column states with the same number of horizontal edges
but with their horizontal edges having different sets of y-coordinates. If the slit has width
w, then there are

(
w+1

2m+1

)
different choices for the y-coordinates of 2m + 1 horizontal edges.

Finally, given a set of 2m + 1 horizontal edges, we must consider how many ways there are
to specify how these edges should be connected through previous column states. If there are
2m + 1 horizontal edges in a particular column state, then 2m of them must be connected in
pairs through previous column states without their paths crossing one another (otherwise the
self-avoidance constraint is violated). The remaining edge must then be able to be extended
indefinitely to the left without crossing any of the paths between the other 2m horizontal edges.
This infinite extension is equivalent to requiring that the remaining edge be connected on the
left to an additional horizontal edge below the lowest edge (or above the highest edge). With
the addition of a horizontal edge at height y = −1, a specification of how the original 2m + 1
horizontal edges can be connected is thus equivalent to a pairing of the now 2m + 2 horizontal
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(a) (b)

Figure 3. (a) Possible column states for self-avoiding polygons in a slit of width w = 1. (b) An
example of the column state representation of a self-avoiding polygon.

(a) (b)

Figure 4. (a) Possible column states, S1, S2, S3, for self-avoiding polygons in a slit of width
w = 2. (b) An example of the column state representation of a self-avoiding polygon of length
n = 18 consisting of the sequence of 6 column states (S1, S2, S3, S3, S3, S2).

edges; the edges must be paired up using a set of m + 1 non-intersecting lines (on the left)
that join the left-most end points of a paired set of horizontal edges. This problem is then
equivalent to calculating the number of ways of joining 2m + 2 points on a circle to form m + 1
non-intersecting chords. This can be done in Cm+1 ways, where Cm is the mth Catalan number
[17] given by 1

m+1

( 2m

m

)
. Thus, the number of possible column states for unfolded self-avoiding

walks in a slit of width w, denoted by cw, is given by [12]:

cw =
�w/2�∑
m=0

(
w + 1

2m + 1

)
Cm+1 =

�w/2�∑
m=0

2(w + 1)!

(w − 2m)!m!(m + 2)!

= (w + 1)2F1

(−w

2
,
−w + 1

2
, 3, 4

)
, (6)

where 2F1(x1, x2, y1, z) is the hypergeometric function. The first few values of cw for widths
w = 1, . . . , 20 are 2, 5, 12, 30, 76, 196, 512, 1353, 3610, 9713, 26 324, 71 799, 196 938,
542 895, 1503 312, 4179 603, 11 662 902, 32 652 735, 91 695 540, 258 215 664.

2.2. Self-avoiding polygons

Similarly, a two-dimensional self-avoiding polygon in a slit of width w can be considered as
a sequence of column states. In a slit of width w = 1, there is only one possible column state,
S1, for self-avoiding polygons as depicted in figure 3(a). The self-avoiding polygon in
figure 3(b) can be represented as the sequence of column states (S1, S1, S1, . . . , S1,

S1, S1).
Figure 4(a) shows the three possible column states, S1, S2, S3, for self-avoiding polygons

in a slit of width w = 2. If a polygon is generated from a sequence of column states, then
there is again a set of matching rules which gives, for each column state, the possible states to
which it may be appended on the right by the addition of vertical edges. For example, one may
not append column state S1 to S3 on the right because there is no possible selection of vertical
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edges which would give a consistent self-avoiding matching of these two states. Figure 4(b)
depicts an example of the column state representation for a particular self-avoiding polygon
of length n = 18 consisting of the sequence of 6 column states (S1, S2, S3, S3, S3, S2).

Following an argument similar to that given in section 2.1 for self-avoiding walks, the
number of possible column states for self-avoiding polygons in a slit of width w, denoted by
ĉw, is given by [12]:

ĉw =
�(w+1)/2�∑

m=1

(
w + 1
2m

)
Cm =

�(w+1)/2�∑
m=1

(w + 1)!

(w + 1 − 2m)!m!(m + 1)!

= w(w + 1)

2
3F2

(
1,

−w + 2

2
,
−w + 1

2
, 2, 3, 4

)
, (7)

where pFq(x1, . . . , xp, y1, . . . , yq, z) is the generalized hypergeometric function with p
parameters of type 1 and q parameters of type 2. The first few values of ĉw for widths
w = 1, . . . , 20 are 1, 3, 8, 20, 50, 126, 322, 834, 2187, 5797, 15 510, 41 834, 113 633,
310 571, 853 466, 2356 778, 6536 381, 18 199 283, 50 852 018, 142 547 558.

3. Transfer-matrix setup

Given a fixed positive integer width w and a fixed positive integer number of columns c, one can
count (up to equivalency under horizontal translation) the number of unfolded self-avoiding
walks in a slit of width w with c columns by means of a transfer-matrix [3, 12]. Furthermore,
the transfer matrix can be used to weight each of these self-avoiding walks according to any
parameters that depend only on individual column states and pairs of consecutive column
states. For example, one may choose to weight according to the number of edges, the number
of edges at each height y (in particular, at the top and bottom confining lines), etc. The
remainder of this section will consider the self-avoiding walk case, but a weighted count of
self-avoiding polygons can be treated in a similar manner.

For a fixed width w let M be a cw × cw matrix, where cw is the number of possible
column states, given by (6). The entry in the ith row and j th column of M, denoted by mij ,
is zero if column state j cannot follow column state i in the construction of a self-avoiding
walk. Otherwise, we first suppose that we are building a self-avoiding walk column-state-
by-column-state and currently the walk ends at column state i. Suppose next that the walk
is extended by appending column state j on the right, then mij is equal to the factor that is
contributed to the weight of the walk due to the addition of column state j . In accordance
with the grand canonical partition function (2), mij has a factor

• a0 if column state j has a horizontal edge at y = 0 (the bottom wall),

• a1 if it has a horizontal edge at y = 1 (immediately above the bottom wall),

• a0,1 if a vertical edge is needed between y = 0 and y = 1 to keep connectivity when
column state j is appended to column state i on the right,

• bt if column state j has a horizontal edge at y = w (the top wall),

• bt−1 if it has a horizontal edge at y = w − 1 (immediately below the top wall),

• bt−1,t if a vertical edge is needed between y = w − 1 and y = w to keep connectivity
when column state j is appended to column state i on the right, and

• z for each edge, either vertical or horizontal, arising from appending column state j to
column state i on the right.

7
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For example, consider the slit of width w = 2, then the matrix M is given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

za0 z2a1a0,1 z3a0,1bt−1,t bt z4a0a1bt−1bt−1,t bt 0

z2a0a0,1 za1bt−1 z2bt−1,t bt 0 0

z3a0a0,1bt−1,t z2a1bt−1,t bt−1 zbt 0 z4a0a0,1a1bt−1bt

0 0 z2bt z3a0a1bt−1bt 0

za0 0 0 0 z3a0a1bt−1bt

⎞
⎟⎟⎟⎟⎟⎟⎠
(8)

where the column states are labeled as in figure 2.
The matrix M for self-avoiding polygons in a slit of width w is constructed in the same

manner. As an example, we present the matrix M for self-avoiding polygons in a slit of width
w = 2:

M =

⎛
⎜⎝

z2a0a1bt−1bt z3a0bt−1,t bt 0

z3a0a1bt−1bt−1,t z2a0bt z3a0,1a1bt−1bt

0 z3a0a0,1bt z2a1bt−1bt

⎞
⎟⎠ (9)

where the column states are labeled as in figure 4.
As described by Stilck and Machado [3], one can then define for each column state

c = 1, . . . , cw a partial partition function

gx(c) =
∑
n,�vx,c

cn(�vx,c, w)a
v0
0 a

v1
1 a

v0,1

0,1 bvw

t b
vw−1
t−1 b

vw−1,w

t−1,t zn, (10)

where cn(�vx,c, w) is the number of self-avoiding walks with the following three properties:
they start with one of the w +1 column states that have a single horizontal edge, they consist of
a sequence of x column states and, their last column is in column state c. Then, by appending
any column state ĉ on the right one can obtain the following recursion relation for the gx(c)’s:

gx+1(ĉ) =
cw∑

c=1

gx(c)mcĉ. (11)

The fact that we are considering unfolded self-avoiding walks yields the initial conditions

g0(c) =
w+1∑
ĉ=1

δc,ĉ (12)

where the convention is made to label the column states in such a way that the first w + 1 of
them consist of a single horizontal edge.

Then, the grand canonical partition function for all unfolded self-avoiding walks ending
with column state c can be defined as

G(c) =
∞∑

x=0

gx(c). (13)

Based on the recursion relations (11), these grand canonical partition functions satisfy a
set of cw linear equations

cw∑
c=1

G(c)(mcĉ − δĉ,c) = −g0(ĉ). (14)

This set of linear equations can be written in a matrix form as

�G(M − I ) = −�g0, (15)

8
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where �G = (G(1), . . . ,G(cw)) and �g0 = (g0(1), . . . , g0(cw)). The linear system can then be
solved as

�G = −�g0(M − I )−1, (16)

which is well defined as long as the spectral radius of the matrix M is less than one [18]. The
fact that we are considering unfolded self-avoiding walks yields the final condition that the
walks must end in one of the first w + 1 column states (recall that the convention was made
that the column states are labeled in such a way so as to have the first w + 1 of them consisting
of single horizontal edges), and hence the grand canonical partition function of interest (2) is
given by

H =
w+1∑
c=1

G(c) (17)

which can be obtained by multiplying the row vector �G on the right by a column vector
consisting of w + 1 ones followed by cw − (w + 1) zeros.

As indicated by (4), for fixed wall interaction parameters �a and �b one can then obtain
the free energy of the system from the radius of convergence zc(H(�a, �b,w, z)) of the grand
canonical partition function H(�a, �b,w, z). Following arguments as given in [13], the matrix
M can be proven to be primitive and hence, by the Perron–Frobenius theorem, it has a unique
positive eigenvalue with largest modulus. The radius of convergence can then be obtained
from the pole of (M −I )−1 with smallest modulus, or equivalently from the zero of det(M −I )

with smallest modulus [13].
One can also obtain the free energy by using the power method [19] on the matrix form

of (11), given by

�gx+1 = �gxM, (18)

where �gx = (gx(1), . . . , gx(cw)). By recursion then

�gx+1 = �g0M
x (19)

and by considering limx→∞ �gx , one has to look for the value of z for which the matrix M
has its largest eigenvalue equal to one (otherwise �gx vanishes or diverges). Then limx→∞ �gx

becomes the left eigenvector of M with eigenvalue one.

4. Results

We are interested in the behavior of the system as a function of the wall interaction parameters
�a and �b and the width w, in particular, the nature of the forces. In this section we present
results for both self-avoiding walks and self-avoiding polygons in the four different models
described in the introduction. Section 4.1 presents results for the model with single layers at
both walls, section 4.2 discusses the model with a double layer at the top wall, section 4.3
addresses the model with double layers at both walls, and section 4.4 describes results for the
model with fully interacting double layers.

4.1. Single layers at both walls

We first consider the case in which the walk interacts with a single layer at each of the confining
lines. In this case, the interaction with the confining lines occurs only on direct contact, i.e.
when the horizontal edges are at heights y = 0 or y = w. The interaction at the bottom wall is
set to a0 = a, the interaction at the top wall is set to bt = b, and all other wall interactions are
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Figure 5. Force for self-avoiding walks in slits of widths w = 1, . . . , 9 with single layers at
both walls when a = b. A positive force corresponds to a repulsive regime and a negative force
corresponds to an attractive regime. Sub-figure (b) is the portion of sub-figure (a) around the
zero-force crossing point.

turned off by setting a0,1 = a1 = bt−1 = bt−1,t = 1. The partition function for self-avoiding
walks (1) becomes

Zn(�a, �b,w) =
∑

�v
cn(�v,w)av0bvw . (20)

The phase diagrams for both Dyck and Motzkin path models were investigated in the
large-w regime [6, 8] and several different force regimes were identified: a long-ranged (the
force decays as a power law in w) and repulsive regime, a short-ranged (the force decays
exponentially in w) and attractive regime, and a short-ranged and repulsive regime. In
figures 5 and 6 we observe that the two-dimensional self-avoiding walks also present attractive
and repulsive regimes for the slit widths considered here, although we have not determined
whether these forces are short-ranged or long-ranged because one needs the asymptotic
behavior of the force as the width w diverges.

Figure 5 plots the force as a function of the wall interaction parameter a when a = b for
self-avoiding walks in slits of widths w = 1, . . . , 9 with single layers at both walls. Note that
the force is repulsive (it is positive) for small values of a. As a increases, the force decreases
until it becomes an attractive force (it is negative). The force is not a monotonic function, as
can be clearly observed in figure 5(a). Even though for large values of a the force is increasing,
we found that it stayed below zero as a got larger. That is, we did not locate a second repulsive
regime at large values of a. The same behavior was observed in the a = b case in a similar
self-avoiding walk model [3] (where the interaction occurs at the vertices, rather than at the
edges of the walk), and in the three-dimensional case for short walks [5].

Next, we consider general values of the wall interaction parameters a and b (see figure 6)
and obtain similar behavior when one parameter (a or b) is held constant at a value larger than
one and the other parameter is increased, that is: the force is repulsive (positive) for small
values of the parameter, it decreases until it becomes attractive (negative), and eventually it
increases again without becoming repulsive (positive) again. This behavior was conjectured
in [4] and observed in similar directed walk (Dyck path and Motzkin path) models [6, 8]. The
zero-force curve found in the directed walk models in [6, 8] is independent of the width of
the slit. The behavior for self-avoiding walks is different, the location of the zero-force curve

10



J. Phys. A: Math. Theor. 41 (2008) 185004 J Alvarez et al

1 1.5 2 2.5 3 3.5 4

1

1.5

2

2.5

3

3.5

4

a

b

W = 1

W = 3

W = 4

W = 2

W = 5

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

a

b
(a) (b)

Figure 6. Zero-force curve for self-avoiding walks in slits of widths w = 1, . . . , 5 with single
layers at both walls. The repulsive region (where the force is positive) is the region south-west
of the curves and the attractive region (where the force is negative) is the north-east region. The
vertical and horizontal lines around 2.038 indicate the estimated adsorption transition point for
self-avoiding walks. The diagonal line is the a = b line. Sub-figure (b) shows that the curves
exhibit a vertical asymptote (as b → ∞) at a = 1 and a horizontal asymptote (as a → ∞) at
b = 1.

in our model does depend on the width of the slit. Figure 6 plots the zero-force curve for
self-avoiding walks in slits of widths w = 1, . . . , 5 with single layers at both walls, where the
repulsive region (where the force is positive) is the region south-west of the curves and the
attractive region (where the force is negative) is the north-east region. The curves never cross
one another.

It was shown in [4] that the zero-force curves lay to the right of the vertical line a = 1
and above the horizontal line b = 1. One can observe in figure 6(b) that the curves exhibit a
vertical asymptote (as b → ∞) at a = 1 and a horizontal asymptote (as a → ∞) at b = 1.
The vertical and horizontal lines at 2.038 indicate the estimated adsorption transition point
for self-avoiding walks [20], and it seems that along the a = b line, the zero-force curves
approach the adsorption transition point. This can be observed in figure 7, which plots the
zero-force point along the a = b line as a function of 1/w. The point marked by a star on the
vertical axis corresponds to the estimated adsorption transition point for self-avoiding walks:
a ≈ 2.038.

The repulsive and attractive regimes for self-avoiding walks in a slit with single layers at
both walls can be explained intuitively because for small wall interaction parameters, there
is an entropy loss from the geometrical confinement leading to a repulsive force. However,
if one of the wall interaction parameters is large (say a) and the other is small (say b), then
conformations of the walk with short excursions but which otherwise stay close to the bottom
wall should dominate the partition function and determine the free energy. If the large wall
interaction parameter (say a) is fixed and the other parameter (say b) increases, there will be
a point where conformations which cross over from one side of the slit to the other begin to
contribute significantly to the free energy, and eventually dominate it. In this case the walk
will increase its free energy if the confining lines are moved closer together, as the energy
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Figure 7. Zero-force point along the a = b line. The point marked by a star on the vertical axis
corresponds to the estimated adsorption transition point for self-avoiding walks: a ≈ 2.038.

increase from visits to both confining lines overcomes the resulting decrease in entropy. Hence
the force becomes attractive for large wall interaction parameters.

On the other hand, self-avoiding polygons in a slit with single layers at both walls behave
differently. Specifically, as shown next in lemma 2, there are infinitely many values of
width w for which the force is never attractive. Intuitively, this is because the polygon is a
topological circle so, in the square lattice, the bottom side of the polygon prevents its top side
from reaching the bottom wall (and vice versa) to interact with it. Hence, even if the wall
interaction parameters are large, keeping the confining lines close together does not increase
the free energy. This topological constraint can be overcome with the addition of a second
layer of interaction to the walls, as will be described in sections 4.2, 4.3 and 4.4.

Lemma 1. Consider self-avoiding polygons in a slit with single layers at both walls. Then,
for any positive width w the free energy difference from increasing the width by a distance of
at least w units is non-negative, i.e.

κ(�a, �b,w + i) − κ(�a, �b,w) � 0

for integer i � w.

Proof. Let w be any positive width and let i � w be an integer. Take any self-avoiding
polygon of length n in a slit of width w with v0 edges at the bottom wall and vw edges at the
top wall.

Choose the top-most edge among the left-most vertical edges of the polygon (there is
always such an edge) and choose the top-most edge among the right-most vertical edges (there
is always such an edge). Cut the polygon at the lexicographic top vertices of the two chosen
vertical edges to obtain two disjoint self-avoiding walks with the same span in the x-direction.
All the visits from the polygon to the top wall of the slit are part of one of the walks (we shall
refer to this walk as the top walk), and all the visits from the polygon to the bottom wall are
part of the other walk (to which we shall refer as the bottom walk). This separation, into two
disjoint walks, of the top and bottom visits of the polygon does not always occur in higher
dimensions. Note that the highest edge of the bottom walk has height y < w and that the
lowest edge of the top walk has height y > 0.
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Now increase the slit width to w + i, translate the top walk a distance i units up, and
reconnect the two disjoint walks with i vertical edges on each side. The translation of the top
walk by a distance i � w serves two purposes. First, it ensures that the lowest edge of the top
walk has height y > w, which is above the highest edge of the bottom walk. Hence, there is
no overlapping between the walks and the resulting object is a self-avoiding polygon of length
n + 2i in a slit of width w + i. Second, all edges that were previously at a distance w from
the bottom wall are now at a distance w + i so that all the edges that were originally at the
top wall (in the slit of width w) are still at the top wall (now in the slit of width w + i). The
bottom walk was not translated so all the edges that were previously at the bottom wall are
still there. Therefore, the resulting self-avoiding polygon also has v0 edges at the bottom wall
and vw edges at the top wall.

For each distinct self-avoiding polygon of length n in a slit of width w, this procedure
creates a unique self-avoiding polygon of length n + 2i in a slit of width w + i and no two
self-avoiding polygons in a slit of width w yield the same self-avoiding polygon in a slit of
width w + i. Therefore,

pn(w, v0, vw) � pn+2i (w + i, v0, vw), (21)

where pn(w, v0, vw) is the number of polygons of length n in a slit of width w with v0

horizontal edges at the bottom wall and vw horizontal edges at the top wall. Then, multiplying
by av0bvw , summing over v0, vw, taking logarithms, dividing by n and taking the limit as
n → ∞ yields:

lim
n→∞ n−1 log

(∑
v0,vw

pn(w, v0, vw)av0bvw

)
� lim

n→∞ n−1 log

(∑
v0,vw

pn+2i (w + i, v0, vw)av0bvw

)

(22)

κ(a, b,w) � κ(a, b,w + i). (23)

The existence of the limits in (22) follows mutatis mutandis from [4, 21]. Then

0 � κ(a, b,w + i) − κ(a, b,w). (24)

Therefore, for any positive width w the free energy difference from increasing the width by a
distance of at least w units is non-negative, and the lemma is proved. �

Lemma 2. There are infinitely many values of width w for which the force for self-avoiding
polygons in a slit of width w with single layers at both walls is always non-attractive (non-
negative).

Proof. Let w be any positive width, take equation (24) from lemma 1 with i = w and expand
it as a telescopic sum to obtain

0 � κ(a, b, 2w)− κ(a, b,w)=
w−1∑
m=0

(κ(a, b,w + m + 1)− κ(a, b,w + m)) =
w−1∑
m=0

fw+m(�a, �b).

(25)

The right-hand side of (25) is non-negative, thus at least one of the terms f (�a, �b, i) :=
κ(a, b, i + 1) − κ(a, b, i) for i = w, . . . , 2w − 1 has to be non-negative. The width w

was chosen arbitrarily, so that for each positive width w there is at least one other width
ŵ ∈ {w,w + 1, . . . , 2w − 1} with f (�a, �b, ŵ) � 0. Therefore, there are infinitely many values
of width w for which the force f (�a, �b, ŵ) for self-avoiding polygons in a slit of width w with
single layers at both walls is always non-negative, and the lemma is proved. �
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Figure 8. Force along the a = b line for self-avoiding polygons in slits of widths w = 1, . . . , 9 with
single layers at both walls. A positive force corresponds to a repulsive regime. The observation
that the forces are always positive is consistent with lemma 2.

Figure 8 plots the force along the a = b line for self-avoiding polygons in slits of widths
w = 1, . . . , 9 with single layers at both walls. The observation that the forces are always
positive is consistent with lemma 2.

4.2. Double layer at the top wall

We proved in section 4.1 that there is no attractive regime for infinitely many slit widths for
self-avoiding polygon models with single layers at both walls, and we saw that the widths
w = 1, 2, . . . , 9 are example widths for which this holds. We argued that this was due to the
fact that the polygon is a topological circle so the top side of the polygon prevents the bottom
side from being able to reach the top wall (and vice versa) to increase its free energy. In this
section we examine a model with a double layer at the top wall so that a horizontal edge in
the polygon or walk interacts with the top wall if it is at height y = w or at height y = w − 1.
This is to counteract the shielding effect of the polygon so that although the top side of the
polygon still prevents the bottom side from interacting with the top layer of the top wall, now
the bottom side can interact with the second layer of the top wall. The interaction with the top
wall then is modeled by setting bt−1 = bt = b, while the interaction at the bottom wall is set
to a0 = a, and all other wall interactions are turned off by setting a0,1 = a1 = bt−1,t = 1. The
partition function (1) becomes

Zn(�a, �b,w) =
∑

�v
cn(�v,w)av0bvw−1+vw . (26)

In this model, both self-avoiding walks and self-avoiding polygons exhibit attractive and
repulsive regimes. Figure 9 plots the zero-force curves for self-avoiding walks in slits of
widths w = 2, . . . , 5 with a double layer at the top wall. The curves do not cross one another
and in this model the curves are not symmetric about the a = b line. The curve for width
w = 1 is a degenerate case and is not plotted in the figure. Observe in figure 9(b) that the
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Figure 9. Zero-force curve for self-avoiding walks in slits of widths w = 2, . . . , 5 with a double
layer at the top wall. The repulsive region (where the force is positive) is the region south-west
of the curves and the attractive region (where the force is negative) is the north-east region. The
diagonal line is the a = b line. Sub-figure (b) shows that the curves exhibit a vertical asymptote
(as b → ∞) at a = 1 and a horizontal asymptote (as a → ∞) at b = 1.
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Figure 10. Force along the a = b line for self-avoiding walks in a slit of width w = 2, . . . , 9 with
a double layer at the top wall. A positive force corresponds to a repulsive regime and a negative
force corresponds to an attractive regime. Sub-figure (b) is the portion of sub-figure (a) around the
zero-force crossing point.

curves exhibit a vertical asymptote (as b → ∞) at a = 1 and a horizontal asymptote (as
a → ∞) at b = 1.

Figure 10 plots the force along the a = b line in the phase diagram for self-avoiding walks
in slits of widths w = 2, . . . , 9 with a double layer at the top wall. The force is repulsive
(positive) for small values of the wall interaction parameter a but it decreases until it becomes
attractive (negative). For increasingly larger values of a the force goes through a minimum
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Figure 11. Zero-force curve for self-avoiding polygons in slits of widths w = 2, . . . , 5 with
a double layer at the top wall. The repulsive region (where the force is positive) is the region
south-west of the curves and the attractive region (where the force is negative) is the north-east
region. The diagonal line is the a = b line. Sub-figure (b) shows that the curves exhibit a vertical
asymptote (as b → ∞) at a = 1 and that there is re-entrant behavior for large b as a increases.

(where the attraction is maximal) and then increases to less negative values. However, the
force remains negative (and attractive) and seems to approach a zero-force as a increases
without bound.

Figure 11 plots the zero-force curve for self-avoiding polygons in slits of widths
w = 2, . . . , 5 with a double layer at the top wall. These curves are not symmetric about
the a = b line. By looking at a wall interaction parameter b = 3, say, and considering
increasing values of the wall interaction parameter a the force goes from being repulsive to
being attractive and then back to being repulsive; this is referred to as a re-entrant behavior.
It appears that for any sufficiently large value of b, a re-entrant behavior is observed as a
increases. The curves exhibit a vertical asymptote (as b → ∞) at a = 1. The curve for width
w = 1 is not plotted because it is a degenerate case.

Figure 12 plots the force along the a = b line for self-avoiding polygons in slits of widths
w = 2, . . . , 9 with a double layer at the top wall. While the force is repulsive for small
values of the wall interaction parameters a and b, it decreases with increasing values of the
parameters and becomes attractive. As pointed out in the beginning of this subsection, in this
double layer model the bottom side of the polygon can cross over the slit to interact with the
top wall. These conformations of the polygon make a dominating contribution to the free
energy for large values of a and b, and thus creating an attractive regime—in contrast to the
single layer model where screening prevents the formation of an attractive regime.

4.3. Double layers at both walls

This section presents a model with double layers at both walls. Interactions between the
polymer and the walls occur in this case whenever horizontal edges of the walk or polygon
are at heights y ∈ {0, 1, w − 1, w}. We model interactions with the bottom wall by setting
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Figure 12. Force along the a = b line for self-avoiding polygons in slits of widths w = 2, . . . , 9
with a double layer at the top wall. A positive force corresponds to a repulsive regime and a
negative force corresponds to an attractive regime. Sub-figure (b) is the portion of sub-figure (a)
around the zero-force crossing point.

a0 = a1 = a and with the top wall by setting bt−1 = bt = b. The remaining wall interactions
are turned off by choosing a0,1 = bt−1,t = 1. In this model the partition function (1) is

Zn(�a, �b,w) =
∑

�v
cn(�v,w)av0+v1bvw−1+vw . (27)

Figure 13 plots the zero-force curve for self-avoiding walks in slits of widths w = 2, . . . , 5
with double layers at both walls. The curves are symmetric about the a = b line. One can
observe in figure 13(b) that the curves exhibit a vertical asymptote (as b → ∞) at a = 1 and
a horizontal asymptote (as a → ∞) at b = 1.

Figure 14 plots the force along the a = b line for self-avoiding walks in slits of widths
w = 3, . . . , 9 with a double layer at both walls. The curves for widths w = 1, 2 are not plotted
because they are degenerate.

Figure 15 plots the zero-force curve for self-avoiding polygons in slits of widths
w = 3, . . . , 6 with double layers at both walls. The curves are symmetric about the a = b

line, and the curves for widths w = 1, 2 are not plotted due to their degeneracy. Observe in
figure 15(b) that the curves exhibit a vertical asymptote (as b → ∞) at a = 1 and a horizontal
asymptote (as a → ∞) at b = 1.

Figure 16 plots the force along the a = b line for self-avoiding polygons in slits of widths
w = 3, . . . , 9 with double layers at both walls.

It is not clear from our results for this model whether or not the zero-force point along the
line a = b diverges as w → ∞. This remains an open question in this model.

4.4. The fully interacting double layer model

Finally, this section presents a model where all the wall interactions in the partition function
(1) are included, but with the restriction that all interactions near the bottom wall are equal, i.e.
a0 = a0,1 = a1 = a, and all interactions near the top wall are equal, i.e. bt−1 = bt−1,t = bt = b.
The partition function (1) becomes

Zn(�a, �b,w) =
∑

�v
pn(�v,w)av0+v0,1+v1bvw−1+vw−1,w+vw . (28)
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Figure 13. Zero-force curve for self-avoiding walks in slits of widths w = 2, . . . , 5 with double
layers at both walls. The repulsive region (where the force is positive) is the region south-west
of the curves and the attractive region (where the force is negative) is the north-east region. The
diagonal line is the a = b line. Sub-figure (b) shows that the curves exhibit a vertical asymptote
(as b → ∞) at a = 1 and a horizontal asymptote (as a → ∞) at b = 1.
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Figure 14. Force along the a = b line for self-avoiding walks in slits of widths w = 3, . . . , 9
with double layers at both walls. A positive force corresponds to a repulsive regime and a negative
force corresponds to an attractive regime. Sub-figure (b) is the portion of sub-figure (a) around the
zero-force crossing point.

Figure 17 plots the zero-force curve for self-avoiding polygons in slits of widths
w = 3, . . . , 7 with fully interacting double layers at both walls. The curves are symmetric
about the a = b line. There is a re-entrant behavior in some regions of the phase diagram and
the curves exhibit a vertical asymptote (as b → ∞) at a = 1 and a horizontal asymptote (as
a → ∞) at b = 1. The curves for widths w = 1, 2 are not plotted because they are degenerate
cases.
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Figure 15. Zero-force curve for self-avoiding polygons in slits of widths w = 3, . . . , 6 with double
layers at both walls. The repulsive region (where the force is positive) is the region south-west
of the curves and the attractive region (where the force is negative) is the north-east region. The
diagonal line is the a = b line. Sub-figure (b) shows that the curves exhibit a vertical asymptote
(as b → ∞) at a = 1 and a horizontal asymptote (as a → ∞) at b = 1.
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Figure 16. Force along the a = b line for self-avoiding polygons in slits of widths w = 3, . . . , 9
with double layers at both walls. A positive force corresponds to a repulsive regime and a negative
force corresponds to an attractive regime. Sub-figure (b) is the portion of sub-figure (a) around the
zero-force crossing point.

Figure 18 plots the force along the a = b line for self-avoiding polygons in slits of
widths w = 3, . . . , 7 with fully interacting double layers at both walls. The curves for widths
w = 1, 2 are not plotted due to their degeneracy.

It is not clear from our results for this model whether or not the zero-force point along
the line a = b diverges as w → ∞. This remains an open question in this model, as well as
in the self-avoiding polygon model with double layers at both walls (figure 15). In contrast,
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Figure 17. Zero-force curve for self-avoiding polygons in slits of widths w = 3, . . . , 7 with
fully interacting double layers at both walls. The repulsive region (where the force is positive) is
the region south-west of the curves and the attractive region (where the force is negative) is the
north-east region. The diagonal line is the a = b line. Sub-figure (b) shows that the curves exhibit
a vertical asymptote (as b → ∞) at a = 1 and a horizontal asymptote (as a → ∞) at b = 1.
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Figure 18. Force along the a = b line for self-avoiding polygons in a slit of width w = 3, . . . , 7
with fully interacting double layers at both walls. A positive force corresponds to a repulsive
regime and a negative force corresponds to an attractive regime. Sub-figure (b) is the portion of
sub-figure (a) around the zero-force crossing point.

the self-avoiding walks do not seem to diverge (see figures 6, 9 and 13). In particular, in the
single-layer case (figure 6), it seems to converge to the adsorption transition point.

5. Conclusions

We considered several models of walks and polygons confined to a two-dimensional slit in
the square lattice interacting with the walls of the slit. Our main approach was based on
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transfer-matrix calculations. This limited our models to slits of width at most 10 in most
cases, and width 8 in the model with fully interacting double layers. Larger values of w appear
to be beyond the scope of available computational resources.

Differences in the force diagrams were seen for polygons and walks in the model with
single layers. This is, for example, explicitly seen in figures 5 and 8, where one notes the
absence of an attractive regime in the polygon model (figure 8), while an attractive regime is
clearly present in the walk model (figure 5). We show in lemma 2 that there are infinitely many
values of width w where there is no attractive regime in the polygon model. While we expect
that this result can be extended to all values of w, we have not proved this. In this context,
the transfer matrix results demonstrate rigorously the existence of an attractive regime in the
walk model for the values of w considered.

In the other models we saw attractive and repulsive regimes for both the walk and the
polygon models. We plotted zero-force curves for each of the models in figures 9, 11, 13, 15
and 17. In the models with double layers the zero-force curve is convex in the ab-plane for
walk models (figures 9 and 13), as well as for polygons when there is a single layer at one wall
and a double layer at the other (figure 11). A more interesting result is obtained for polygons
with double layers at both walls and with fully interacting double layers (figures 15 and 17,
respectively). In these cases, the zero-force curve is not convex, and the shape of this curve
for large w is an open question.
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